69 research outputs found

    On the Effective Capacity of Two-Hop Communication Systems

    Get PDF
    In this paper, two-hop communication between a source and a destination with the aid of an intermediate relay node is considered. Both the source and intermediate relay node are assumed to operate under statistical quality of service (QoS) constraints imposed as limitations on the buffer overflow probabilities. It is further assumed that the nodes send the information at fixed power levels and have perfect channel side information. In this scenario, the maximum constant arrival rates that can be supported by this two-hop link are characterized by finding the effective capacity. Through this analysis, the impact upon the throughput of having buffer constraints at the source and intermediate-hop nodes is identified.Comment: submitted to ICC 201

    Channel Coding over Multiple Coherence Blocks with Queueing Constraints

    Get PDF
    This paper investigates the performance of wireless systems that employ finite-blocklength channel codes for transmission and operate under queueing constraints in the form of limitations on buffer overflow probabilities. A block fading model, in which fading stays constant in each coherence block and change independently between blocks, is considered. It is assumed that channel coding is performed over multiple coherence blocks. An approximate lower bound on the transmission rate is obtained from Feintein's Lemma. This lower bound is considered as the service rate and is incorporated into the effective capacity formulation, which characterizes the maximum constant arrival rate that can be supported under statistical queuing constraints. Performances of variable-rate and fixed-rate transmissions are studied. The optimum error probability for variable rate transmission and the optimum coding rate for fixed rate transmission are shown to be unique. Moreover, the tradeoff between the throughput and the number of blocks over which channel coding is performed is identified.Comment: submitted to ICC 201

    The Impact of QoS Constraints on the Energy Efficiency of Fixed-Rate Wireless Transmissions

    Get PDF
    Transmission over wireless fading channels under quality of service (QoS) constraints is studied when only the receiver has channel side information. Being unaware of the channel conditions, transmitter is assumed to send the information at a fixed rate. Under these assumptions, a two-state (ON-OFF) transmission model is adopted, where information is transmitted reliably at a fixed rate in the ON state while no reliable transmission occurs in the OFF state. QoS limitations are imposed as constraints on buffer violation probabilities, and effective capacity formulation is used to identify the maximum throughput that a wireless channel can sustain while satisfying statistical QoS constraints. Energy efficiency is investigated by obtaining the bit energy required at zero spectral efficiency and the wideband slope in both wideband and low-power regimes assuming that the receiver has perfect channel side information (CSI). In both wideband and low-power regimes, the increased energy requirements due to the presence of QoS constraints are quantified. Comparisons with variable-rate/fixed-power and variable-rate/variable-power cases are given. Energy efficiency is further analyzed in the presence of channel uncertainties. The optimal fraction of power allocated to training is identified under QoS constraints. It is proven that the minimum bit energy in the low-power regime is attained at a certain nonzero power level below which bit energy increases without bound with vanishing power
    • …
    corecore